Home / New Products / EOS, Airbus Group Innovations Team on Aerospace Sustainability Study for Industrial 3D Printing

EOS, Airbus Group Innovations Team on Aerospace Sustainability Study for Industrial 3D Printing

By DE Editors

EOS has collaborated with Airbus Group Innovations (previously EADS Innovation Works) to complete an environmental lifecycle comparison of rapid investment casting and direct metal laser sintering (DMLS).

The eco-assessment, applied to an Airbus A320 nacelle hinge bracket (a highly standardized part), strove to include detailed aspects of the overall lifecycle: from the supplier of the raw powder metal, to the equipment manufacturer (EOS), and to the end-user (Airbus). Adapted from Airbus’ streamlined lifecycle assessment (SLCA) and ISO 14040 series requirements data, the testing will serve as the basis for continued “cradle-to-cradle” study into other aerospace parts, processes and end-of-life strategies, the companies said.

“We have worked in a bold, new collaboration with Airbus Group Innovations on integrating business and ecological sustainability from sourcing through to product development,” said Nicola Knoch, environmental and sustainability consultant to EOS. “There is now a valuable, holistic baseline established on our technology regarding the measurable costs, benefits and impacts of DMLS. This sets the groundwork for future technology developments in additive manufacturing and further studies.”

As a first step, the SLCA was conducted on a generic bracket benchmarking the DMLS process with a conventional casting process used as the baseline. Comparing the lifecycle of a steel bracket (casting process) with the lifecycle of a design-optimized titanium bracket (DMLS), the companies found that CO2 emissions over the whole lifecycle of the nacelle hinges were reduced by nearly 40 percent via weight saving that resulted from an optimized geometry, which is enabled by the design freedom offered by the DMLS process and the use of titanium.

Using DMLS to build the hinge may reduce the weight per plane by 10 kilograms, as well.

The second phase of the analysis focused on the manufacturing process for the design-optimized bracket using titanium as an ideal, common material, this time benchmarking the manufacturing process of investment casting against that of DMLS via the EOSINT M 280 system. The total energy consumption for creating the initial raw powder metal, then producing the bracket in DMLS, was slightly smaller than the equivalent cast process steps (with the higher energy use of DMLS limited to the melt and chill cycle of its manufacturing profile and offset at the same time by a significantly reduced build time). Casting in this comparison was burdened with the furnace operation of burning an SLA (stereolithography) epoxy model, which uses considerable energy and generates greenhouse gases.

According to the findings, the DMLS process itself used only the material actually needed to make the part, eliminating waste from secondary machining and reducing consumption of titanium by 25 percent over the cast application.

“DMLS has demonstrated a number of benefits, as it can support the optimization of design and enable subsequent manufacture in low-volume production,” said Jon Meyer, additive layer manufacturing research team leader, in his final report. “In general, the joint study revealed that DMLS has the potential to build light, sustainable parts with due regard for the company’s CO2 footprint.”
 
For more information, visit EOS.
 
Sources: Press materials received from the company and additional information gleaned from the company’s website.

About DE Editors

DE's editors contribute news and new product announcements to Desktop Engineering. Press releases can be sent to them via DE-Editors@deskeng.com.